Nucleocytoplasmic transport of DNA: enhancing non-viral gene transfer.

نویسندگان

  • Kylie M Wagstaff
  • David A Jans
چکیده

Gene therapy, the correction of dysfunctional or deleted genes by supplying the lacking component, has long been awaited as a means to permanently treat or reverse many genetic disorders. To achieve this, therapeutic DNA must be delivered to the nucleus of cells using a safe and efficient delivery vector. Although viral-based vectors have been utilized extensively due to their innate ability to deliver DNA to intact cells, safety considerations, such as pathogenicity, oncogenicity and the stimulation of an immunological response in the host, remain problematical. There has, however, been much progress in the development of safe non-viral gene-delivery vectors, although they remain less efficient than the viral counterparts. The major limitations of non-viral gene transfer reside in the fact that it must be tailored to overcome the intracellular barriers to DNA delivery that viruses already master, including the cellular and nuclear membranes. In particular, nuclear transport of the therapeutic DNA is known to be the rate-limiting step in the gene-delivery process. Despite this, much progress had been made in recent years in developing novel means to overcome these barriers and efficiently deliver DNA to the nuclei of intact cells. This review focuses on the nucleocytoplasmic delivery of DNA and mechanisms to enhance to non-viral-mediated gene transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear accumulation of plasmid DNA can be enhanced by non-selective gating of the nuclear pore

One of the major obstacles in non-viral gene transfer is the nuclear membrane. Attempts to improve the transport of DNA to the nucleus through the use of nuclear localization signals or importin-beta have achieved limited success. It has been proposed that the nuclear pore complexes (NPCs) through which nucleocytoplasmic transport occurs are filled with a hydrophobic phase through which hydroph...

متن کامل

Characterization of Ku702–NLS as Bipartite Nuclear Localization Sequence for Non-Viral Gene Delivery

Several barriers have to be overcome in order to achieve gene expression in target cells, e.g. cellular uptake, endosomal release and translocation to the nucleus. Nuclear localization sequences (NLS) enhance gene delivery by increasing the uptake of plasmid DNA (pDNA) to the nucleus. So far, only monopartite NLS were analysed for non-viral gene delivery. In this study, we examined the characte...

متن کامل

Coupling of importin beta binding peptide on plasmid DNA: transfection efficiency is increased by modification of lipoplex's physico-chemical properties

BACKGROUND Non-viral vectors for gene transfer are less immunogenic than viral vectors but also less efficient. Significant effort has focused on enhancing non-viral gene transfer efficiency by increasing nuclear import of plasmid DNA, particularly by coupling nuclear localization peptidic sequences to plasmid DNA. RESULTS We have coupled a 62-aminoacid peptide derived from hSRP1alpha importi...

متن کامل

The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA.

During the late phase of adenovirus infection, viral mRNA is efficiently transported from the nucleus to the cytoplasm while most cellular mRNA species are retained in the nucleus. Two viral proteins, E1B-55 kDa and E4orf6, are both necessary for these effects. The E4orf6 protein of adenovirus type 5 binds and relocalizes E1B-55 kDa, and the complex of the two proteins was previously shown to s...

متن کامل

Human cytomegalovirus UL84 protein contains two nuclear export signals and shuttles between the nucleus and the cytoplasm.

Previous studies defined pUL84 of human cytomegalovirus as an essential regulatory protein with nuclear localization that was proposed to act during initiation of viral-DNA synthesis. Recently, we demonstrated that a complex domain of 282 amino acids within pUL84 functions as a nonconventional nuclear localization signal. Sequence inspection of this domain revealed the presence of motifs with h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 406 2  شماره 

صفحات  -

تاریخ انتشار 2007